
ESc 101: Fundamentals of Computing

Lecture 22

Feb 22, 2010

Lecture 22 () ESc 101 Feb 22, 2010 1 / 11



Summary So far

Concepts learned so far:

Statements: assignment, conditional, loop

Arrays

Functions

Strings

Pointers

This is nearly all of C, except for a couple of concepts more.

Lecture 22 () ESc 101 Feb 22, 2010 2 / 11



Summary So far

Concepts learned so far:

Statements: assignment, conditional, loop

Arrays

Functions

Strings

Pointers

This is nearly all of C, except for a couple of concepts more.

Lecture 22 () ESc 101 Feb 22, 2010 2 / 11



Summary So far

Concepts learned so far:

Statements: assignment, conditional, loop

Arrays

Functions

Strings

Pointers

This is nearly all of C, except for a couple of concepts more.

Lecture 22 () ESc 101 Feb 22, 2010 2 / 11



Summary So far

Concepts learned so far:

Statements: assignment, conditional, loop

Arrays

Functions

Strings

Pointers

This is nearly all of C, except for a couple of concepts more.

Lecture 22 () ESc 101 Feb 22, 2010 2 / 11



Summary So far

Concepts learned so far:

Statements: assignment, conditional, loop

Arrays

Functions

Strings

Pointers

This is nearly all of C, except for a couple of concepts more.

Lecture 22 () ESc 101 Feb 22, 2010 2 / 11



Summary So far

Concepts learned so far:

Statements: assignment, conditional, loop

Arrays

Functions

Strings

Pointers

This is nearly all of C, except for a couple of concepts more.

Lecture 22 () ESc 101 Feb 22, 2010 2 / 11



Outline

1 More on Arrays

Lecture 22 () ESc 101 Feb 22, 2010 3 / 11



Storing Matrices

We use two dimensional arrays for this:

#define SIZE 100

int matrix[SIZE][SIZE]; /* matrix of size 100 x 100 */

Lecture 22 () ESc 101 Feb 22, 2010 4 / 11



Function for Reading a Matrix

/* Reads a matrix */

void read_matrix(int matrix[][SIZE])

{

int i;

int j;

for (i = 0; i < SIZE; i++) /* read i-th row */

for (j = 0; j < SIZE; j++)

/* read j-th element of i-th row */

scanf(" %d", &matrix[i][j]);

}

Lecture 22 () ESc 101 Feb 22, 2010 5 / 11



Two Dimensional Arrays

matrix[SIZE][SIZE] is a two dimensional array:
I matrix[0], matrix[1], ..., matrix[99] are each arrays of size SIZE

each.
I These are also called single dimensional arrays.

matrix[0][0], ..., matrix[99][99] are names of memory locations
each storing an integer.

Lecture 22 () ESc 101 Feb 22, 2010 6 / 11



Two Dimensional Arrays

matrix[SIZE][SIZE] is a two dimensional array:
I matrix[0], matrix[1], ..., matrix[99] are each arrays of size SIZE

each.
I These are also called single dimensional arrays.

matrix[0][0], ..., matrix[99][99] are names of memory locations
each storing an integer.

Lecture 22 () ESc 101 Feb 22, 2010 6 / 11



Two Dimensional Arrays

matrix[SIZE][SIZE] is a two dimensional array:
I matrix[0], matrix[1], ..., matrix[99] are each arrays of size SIZE

each.
I These are also called single dimensional arrays.

matrix[0][0], ..., matrix[99][99] are names of memory locations
each storing an integer.

Lecture 22 () ESc 101 Feb 22, 2010 6 / 11



Two Dimensional Arrays

matrix[SIZE][SIZE] is a two dimensional array:
I matrix[0], matrix[1], ..., matrix[99] are each arrays of size SIZE

each.
I These are also called single dimensional arrays.

matrix[0][0], ..., matrix[99][99] are names of memory locations
each storing an integer.

Lecture 22 () ESc 101 Feb 22, 2010 6 / 11



Names Associated with Two Dimensional
Arrays

matrix[i][j] stores a single integer value.

matrix[i] stores the address of matrix[i][0].

matrix stores the address of matrix[0][0], same as matrix[0].

Lecture 22 () ESc 101 Feb 22, 2010 7 / 11



Names Associated with Two Dimensional
Arrays

matrix[i][j] stores a single integer value.

matrix[i] stores the address of matrix[i][0].

matrix stores the address of matrix[0][0], same as matrix[0].

Lecture 22 () ESc 101 Feb 22, 2010 7 / 11



Names Associated with Two Dimensional
Arrays

matrix[i][j] stores a single integer value.

matrix[i] stores the address of matrix[i][0].

matrix stores the address of matrix[0][0], same as matrix[0].

Lecture 22 () ESc 101 Feb 22, 2010 7 / 11



Passing Two Dimensional Array as Parameter

We can pass the name of the matrix, a pointer to the first element, as
parameter.

In the declaration of the function, it must be specified either as
read_matrix(int matrix[][SIZE]), or as
read_matrix(int *matrix[SIZE]).

In particular, it cannot be specified as
read_matrix(int matrix[][]).

This is because the function needs to be told that the pointer is to an
array of what size.

This allows correct calculation of *(matrix+i).

Lecture 22 () ESc 101 Feb 22, 2010 8 / 11



Passing Two Dimensional Array as Parameter

We can pass the name of the matrix, a pointer to the first element, as
parameter.

In the declaration of the function, it must be specified either as
read_matrix(int matrix[][SIZE]), or as
read_matrix(int *matrix[SIZE]).

In particular, it cannot be specified as
read_matrix(int matrix[][]).

This is because the function needs to be told that the pointer is to an
array of what size.

This allows correct calculation of *(matrix+i).

Lecture 22 () ESc 101 Feb 22, 2010 8 / 11



Passing Two Dimensional Array as Parameter

We can pass the name of the matrix, a pointer to the first element, as
parameter.

In the declaration of the function, it must be specified either as
read_matrix(int matrix[][SIZE]), or as
read_matrix(int *matrix[SIZE]).

In particular, it cannot be specified as
read_matrix(int matrix[][]).

This is because the function needs to be told that the pointer is to an
array of what size.

This allows correct calculation of *(matrix+i).

Lecture 22 () ESc 101 Feb 22, 2010 8 / 11



Passing Two Dimensional Array as Parameter

We can pass the name of the matrix, a pointer to the first element, as
parameter.

In the declaration of the function, it must be specified either as
read_matrix(int matrix[][SIZE]), or as
read_matrix(int *matrix[SIZE]).

In particular, it cannot be specified as
read_matrix(int matrix[][]).

This is because the function needs to be told that the pointer is to an
array of what size.

This allows correct calculation of *(matrix+i).

Lecture 22 () ESc 101 Feb 22, 2010 8 / 11



Passing Two Dimensional Array as Parameter

We can pass the name of the matrix, a pointer to the first element, as
parameter.

In the declaration of the function, it must be specified either as
read_matrix(int matrix[][SIZE]), or as
read_matrix(int *matrix[SIZE]).

In particular, it cannot be specified as
read_matrix(int matrix[][]).

This is because the function needs to be told that the pointer is to an
array of what size.

This allows correct calculation of *(matrix+i).

Lecture 22 () ESc 101 Feb 22, 2010 8 / 11



Program for Multiplying Two Matrices

#define SIZE 100

main()

{

int A[SIZE][SIZE]; /* input matrix */

int B[SIZE[[SIZE]; /* input matrix */

int C[SIZE][SIZE]; /* resulting matrix */

read_matrix(A);

read_matrix(B);

multiply_matrix(A, B, C);

output_matrix(C);

}

Lecture 22 () ESc 101 Feb 22, 2010 9 / 11



multiply matrix()

/* Calculates C = A * B */

multiply_matrix(int A[][SIZE], int B[][SIZE], int C[][SIZE])

{

for (int i = 0; i < SIZE; i++)

for (int j = 0; j < SIZE; j++) {

C[i][j] = 0; /* initialize */

for (int k = 0; k < SIZE; k++)

C[i][j] = C[i][j] + A[i][k] * B[k][j];

}

}

Lecture 22 () ESc 101 Feb 22, 2010 10 / 11



output matrix()

/* Outputs a matrix */

output_matrix(int A[][SIZE])

{

for (int i = 0; i < SIZE; i++) {

for (int j = 0; j < SIZE; j++)

printf("%d ", A[i][j]);

printf("\n");

}

Lecture 22 () ESc 101 Feb 22, 2010 11 / 11


	More on Arrays

